 DATE	

12–3 The Quadratic Formula

Objective: To learn the quadratic formula and use it to solve equations.

The Quadratic Formula

Example 1

Solution

NAME

The solutions of a quadratic equation in the form of $ax^2 + bx + c = 0$. $a \neq 0$ and $b^2 - 4ac \ge 0$ are given by the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Use the quadratic formula to solve $3x^2 + 5x - 2 = 0$.

Solution
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, where $a = 3$, $b = 5$, and $c = -2$.
 $x = \frac{-5 \pm \sqrt{(5)^2 - 4(3)(-2)}}{2(3)}$ Substitute the given values of a , b , and c .

$$= \frac{-5 \pm \sqrt{49}}{6} = \frac{-5 \pm 7}{6}$$

$$x = \frac{-5 + 7}{6} = \frac{2}{6} = \frac{1}{3} \text{ or } x = \frac{-5 - 7}{6} = \frac{-12}{6} = -2$$

The check is left to you. The solution set is $\{\frac{1}{2}, -2\}$

Use the quadratic formula to solve each equation. 1. $x^2 + 3x - 10 = 0$ {-5, 2} 2. $x^2 - 8x + 7 = 0$ {7, 1} 3. $x^2 + 2x - 3 = 0$ {-3, 1}

 $=\frac{-5 \pm \sqrt{25 + 24}}{6}$

4.
$$x^2 - 14x + 24 = 0$$
 {2, 12} 5. $n^2 + 5n - 6 = 0$ {-6, 1} 6. $x^2 - 6x - 40 = 0$ {-4, 10} 7. $2x^2 + 3x - 2 = 0$ {-2, $\frac{1}{2}$ } 8. $3u^2 - 5u - 2 = 0$ {2, $-\frac{1}{3}$ } 9. $3x^2 - 10x - 8 = 0$ {4, $-\frac{2}{3}$ } 10. $3x^2 - 2x - 1 = 0$ 11. $2x^2 - 5x - 7 = 0$ 12. $5x^2 + 6x - 8 = 0$ {-2, $\frac{4}{5}$ }

Example 2 Use the quadratic formula to solve
$$x^2 = x - 6$$
.

$$x^2 - x + 6 = 0$$
 Rewrite the equation in standard form.
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, where $a = 1$, $b = -1$, and $c = 6$.
 $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(6)}}{2(1)} = \frac{1 \pm \sqrt{1 - 24}}{2} = \frac{1 \pm \sqrt{-23}}{2}$

Since $\sqrt{b^2 - 4ac} = \sqrt{-23}$ and $\sqrt{-23}$ isn't a real number, there is no real solution.

Study Guide, ALGEBRA, Structure and Method, Book 1 Copyright © by Houghton Mifflin Company. All rights reserved. 12-3 The Quadratic Formula (continued)

Use the quadratic formula to solve each equation. 17. $\left\{-\frac{1}{2}, -\frac{9}{2}\right\}$ $\left\{2 + \sqrt{34}, 2 - \sqrt{34}\right\}$ 13. $x^2 - 4x + 6 = 0$ No sol. 14. $2x^2 = 3x - 1 \left\{ \frac{1}{2}, 1 \right\}$ 15. $x^2 - 4x = 30$

16. $2x^2 + 2x + 5 = 0$ No sol. 17. $4x^2 + 20x = -9$ 18. $3x^2 - 3x + 4 = 0$ No sol. Use the quadratic formula to solve $2x^2 - 3x - 4 = 0$. Give irrational roots in Example 3

Simplify.

simplest radical form and then approximate them to the nearest tenth. You may wish

Substitute the given values of a, b, and c.

to use a calculator. $2x^2 - 3x - 4 = 0$ Solution

Solution
$$2x^2 - 3x - 4 = 6$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, where $a = 2, b = -3$, and $c = -4$.

$$x = \frac{1}{2a} \frac{\sqrt{a}}{2a}$$

$$x = \frac{3 \pm \sqrt{9 - 4(2)(-4)}}{2(2)}$$

$$= \frac{3 \pm \sqrt{9 + 32}}{4}$$
$$= \frac{3 \pm \sqrt{41}}{4}$$

or
$$x \approx \frac{3 - 6.4}{4} = -0.85 \approx -0.9$$

The check is left to you.

The solution set is
$$\left\{\frac{3+\sqrt{41}}{4}, \frac{3-\sqrt{41}}{4}\right\}$$
 or $\{2.4, -0.9\}$.

Use the quadratic formula to solve each equation. Give irrational 19-24. Answers given at the roots in simplest radical form and then approximate them to the back of this Answer Key.

Since $\sqrt{41} \approx 6.40$, $x \approx \frac{3 + 6.4}{4} = 2.35 \approx 2.4$

19. $2x^2 = 8x - 5$ 20. $3x^2 + 2x = 2$ 21. $x^2 - 4x - 10 = 0$

4. $1 < 2z + 1 \le 7$

7. $2\sqrt{2x} = 12$ {18}

nearest tenth. You may wish to use a calculator.

22. $x^2 - 4x - 2 = 0$ 23. $2x^2 - 4x + 1 = 0$ 24. $3x^2 - 8x + 2 = 0$ 25. $2x^2 + 1 = 3x \left\{ \frac{1}{2}, 1 \right\}$ 26. $3x^2 + x = 2 \left\{ -1, \frac{2}{3} \right\}$ 27. $4x^2 - 11x = 3 \left\{ 3, -\frac{1}{4} \right\}$

DATE ___

1. $\{-3, 7, \text{ and the real numbers between } -3 \text{ and } 7\}$ **Mixed Review Exercises** 3. {the real numbers between -4 and 1} 4. {3 and the real numbers between 0 and 3}

Solve each open sentence and graph its solution set. Graphs given at the back of this Answer Key. 1. $|x - 2| \le 5$ 2. $2|y + 5| = 4 \{-3, -7\}$ 3. |2n + 3| < 5

Solve by completing the square.

10. $x^2 - 8x + 12 = 0$ {**6.2**} **11.** $3x^2 + 6x = 0$ {**0.** -2} **12.** $c^2 - c = 12$ {-3.4}

8. $|3 + 2k| = 11 \{4, -7\}$ 9. $3|2 - m| = 12 \{-2, 6\}$

5. $\sqrt{x} = 5$ {25} 6. $\sqrt{5n+1} = 6$ {7}